

Japan's Policy and NEDO's Activities in Hydrogen field

January 2023

Yoshiro KAKU Chief Representative, NEDO New Delhi Office

NEDO's Mission

Positioning of NEDO (New Energy and Industrial Technology Development Organization)

- In its role as an innovation accelerator, NEDO formulates project plans and establishes project implementation frameworks by combining the capabilities of industry, academia, and government, including public solicitations of project participants.
- NEDO carries out research and development projects and set targets based on changes in social conditions in order to realize maximum results.

Background: Japan's Energy Situation

Need to increase renewables to address energy security & climate change, but…

- Japanese government declared its ambition to reduce greenhouse gas emissions to <u>net zero by</u> <u>2050</u> in October 2020.
- METI formulated a "<u>Green Growth Strategy</u> Through Achieving Carbon Neutrality in 2050" including "<u>Green Innovation Fund</u>" for supporting 10 years R&DD activities (JPY 2 trillion).
- <u>1% Hydrogen/Ammonia are positioned in 2030 energy mix</u> by 6th Japan's Strategic Energy Plan (October 2021)
- METI has established new committee to discuss on support measures for the <u>hydrogen supply</u> <u>chain</u>.
- METI allocated its FY2022 budget to;
 - Subsidy for Hydrogen Refueling Station: JPY 9 billion (OPEX / CAPEX)
 - Subsidy for $\underline{\textbf{FCV}}$ / EV / other clean energy vehicle: JPY 15.5 billion
 - R&DD: JPY 22.6 billion (through NEDO, not including Green Innovation Fund)

Towards 2050 Carbon Neutrality

Prioritized sectors in Green Growth Strategy

Direction: How to promote Hydrogen

Goals Cost (\$/kg): \$3/kg by 2030 & less than \$2/kg by 2050			2/kg by 2050	
		Short Term (- 2025) Approx. 2 million tons	Mid Term (- 2030) Max. 3 million tons	Long Term (- 2050) 20 million tons
Demand Supply	Existing source (ex. By products)	Maximize utilization as major source	Decarbonization of hydrogen product	ion (with CCUS)
	Import	Accumulation of knowledge and cost reduction through demonstration project	Development of large-scale international hydrogen supply chain	Further scale up through diversification of hydrogen source
	New domestic source	Accumulation of knowledge and cost reduction through demonstration project	Start up hydrogen production by electrolysis using excess energy from renewables	Scale up hydrogen production by electrolysis, and realizing innovative hydrogen production technology
	Transportation	Expansion to FC trucks in addition to FCVs and FC buses	Launch of ships (FC ships, etc.) to the market	Use of hydrogen and synthetic fuel for aviation
	Power generation	Using of stationary fuel cell and small gas turbine for distributed energy	Commercialization of large-scale hydrogen power generation turbine	Further scale up and function as balancing power
	Industry (raw material)	Conducting technology demonstrat chemical process, etc.)	on project (refinery, steel process,	Realizing hydrogen steel process, green chemical, etc.
	Thermal (Industry, business, household)	Substitute fossil fuels through insta decarbonization of supply infrastruc gas pipes	lation of fuel cell and ture using electrolysis and existing	Expanding supply through infrastructure development and hydrogen cost reduction

Current status

Items	Japan's Target (in 2030)	Current status (as of July 2022)
Stationary Fuel Cell		
Regidential Fuel Cell (EneFarm)	5.3 million	439,852 (June 2022)
Mobility		
Passenger Vehicles	800,000	7,418
Fuel Cell Buses	1,200	120
Hydrogen Refueling Station		
Public Stations	900	160

NEDO's Activities in Hydrogen

(1) Production : Electrolysis System (Alkaline, PEM, etc.)

The world's largest-class one-unit hydrogen production (Alkaline. 10MW) at FH2R (Fukushima Hydrogen Energy Research Field)

1.5MW PEM electrolysis (Yamanashi Hydrogen Company)

NEDO's Activities in Hydrogen

(2) Transportation : Energy Carrier (Liquefied H2, MCH, etc.)

World's first liquefied hydrogen carrier ship was launched. Hydrogen is transported from Australia.

International hydrogen supply chain using MCH as the hydrogen carrier in the demonstration project

10

NEDO's Activities in Hydrogen

(3) Use : H2 Co-firing, Fuel Cells (Mobility, Generation) etc.

Hydrogen Burner Technology for Industrial Boilers

FCV, Hydrogen charging station, etc.

Port, Ship, Aviation...

NEDO India's Report concerning Hydrogen Potentials in India

12

- India concentrates on supporting green hydrogen/ammonia, backed by solar power's potential (bidding price : INR 1.99 in December 2020). India aims to become a global hub of hydrogen.
- Some analyses say that India's green hydrogen is highly cost competitive in the world.
- (According to an analysis by TERI, a local think tank, the cost of hydrogen production is expected to be "\$2/kg in 2030, \$1/kg in 2050")
- The Indian government announced the "National Hydrogen Energy Mission" in 2021, and is currently promoting and considering various policies to promote hydrogen.
- Demand for hydrogen in India is estimated to increase five-fold, mainly in the manufacturing and transportation sectors.
- Against these backgrounds, India's public or private conglomerate companies are stepping up their hydrogen efforts.

Also, **US and European companies** are actively cooperating with them.

International Energy Demonstration Project

- Purpose Contribute to solving foreign energy problems through a demonstration of Japanese technology and systems for energy conservation.
 - ✓ Contribute to obtaining energy security by reducing energy consumption through the dissemination of technology.

Implemented Demonstration Projects in India

International Energy Demonstration Project (Current Projects)

NEW

NEW

Project	Companies	Period	Phase
Micro-Substation for electrification using transformers for Large-Capacity Instruments	Nissin Electric	2020~	Demonstration
Electric Mobility Operation System for realizing Last- mile Transportation	Panasonic	2020~	Demonstration
Energy optimization in chemical industry	Toyo Engineering Corp.	2020~	Pre FS
Empirical research about LNG delivery by Indian railways and improvement of cold chain infrastructure in India with LNG cold energy for the energy- consumption efficiency & the CO2-emission reduction	Sojitz Corp. JR Freight Suzuki Motor Corp.	2021~	Pre FS
Demonstration of Ammonia Co-Firing at existing Coal Fired Power Plant in the state of Gujarat	IHI Corp. Kowa Company	2022~	Pre FS
Study on Conformity with Demonstration Requirements for Hydrogen Technology to Achieve Efficient Thermal Operation in Indian Factories	Yamanashi Hydrogen Company Suzuki Motor Corp.	2022~	Pre FS

International Energy Demonstration Project (Hydrogen-related Projects)

Study on Conformity with Demonstration Requirements for Hydrogen Technology to Achieve Efficient Thermal Operation in Indian Factories (Pre-FS)

 Yamanashi Hydrogen Company (YHC: invested by Yamanashi Prefecture, Tokyo Electric Power Company (TEPCO) and Toray Industries) and Suzuki Motor will study the possibility of establishing an optimal thermal operation system in Maruti Suzuki's automobile plant, by utilizing hydrogen produced by a Power-to-Gas (P2G: electrolysis of water) system and surplus solar power. Demonstration of Ammonia Co-Firing at existing Coal Fired Power Plant in the state of Gujarat (Pre-FS)

 IHI Corp., Kowa Company and Adani Power Ltd. (APL), one of the largest private power generation companies in India, will jointly study various technologies and evaluate the economic feasibility of co-firing 20% ammonia gas into the existing boilers at APL-owned Mundra Coal Power Plant.

←YHC's Green Hydrogen
 Demonstration Site in
 Komekurayama, Yamanashi
 Prefecture (Source : YHC)

← Mundra Coal Power Plant (Source : Adani Power)

R&D Program for Promoting Innovative Clean Energy Technologies Through International Collaboration

• Program Outline

✓ The aim of this program is to develop and strengthen international joint Research and Development between Japan and other countries in order to create new and innovative clean energy technologies that will have practical use after 2030.

✓ This program supports Japanese research institutes and universities conducting joint international R&D projects with institutions from G20 member and other countries.

• Program Scheme

*Indian universities and companies may also participate in the program together with Japanese research institutes/universities.

• Project Details

	Project	International collaboration between Japanese research institutes/universities and research institutes/universities		
	scheme	overseas. Private companies may participate but only when research institutes/universities also participate.		
	Project budget	Maximum of almost INR 1.7 crores (25 Million Yen) per project/per year. Note: NEDO will only fund the Japanese side of the		
		international collaboration.		
	Project term	Maximum of 3 years.		
	Target technologies	 Clean energy technologies, including RE and energy- saving and environmental technologies that will have practical application after 2030. 2 R&D themes have been selected for FY2022. 		
Project with India-Japan collaboration "Development of Innovative High-temperatu Thermal Energy Storage technology" (Hokkaido Univ., AIST, IIT Jammu etc.) has been adopted in FY2021.		"Development of Innovative High-temperature Thermal Energy Storage technology" (Hokkaido Univ., AIST, IIT Jammu etc.) has been adopted in FY2021.		

NEDO New Delhi Office Webinar (Launched in 2021)

(1) 4th of February 2021

<u>Theme</u> : India Electricity situation and Renewable energy <u>Speakers</u> : CEA, SECI, Avaada, Toshiba JSW Power Systems Pvt.

(2) 10th of March 2021

<u>Theme :</u> Power distribution, Grid management & Energy Distribution Management and Energy Storage <u>Speakers :</u> NITI Aayog, POSOCO, Tata Power Delhi, Sumitomo Electric, etc.

(3) 24th of March 2021

<u>Theme</u>: Indo-Japanese Drone Ecosystem and Potential Collaborations <u>Speakers</u>: MOCA, DFI, Gov. of Japan(Cabinet Secretariat, METI), ACSL

(4) 14th of January 2022

<u>Theme :</u> Carbon Neutrality in India <u>Speakers :</u> NITI Aayog, MOP(BEE), CEEW, Reliance Industries, Mizuho Bank

(5) 15th of February 2022

<u>Theme</u>: Mobility and Battery Storage <u>Speakers</u>: CESL, ETO Motors, Ather Energy, TDSG(TDS Lithium ion Battery Gujarat)

(6) 24th of February 2022

<u>Theme</u>: Biomass Energy <u>Speakers</u>: MoPNG, PRESPL, IOCL, Hitachi Zosen

(7) 15th of March 2022

<u>Theme :</u> Solar Power and Mini Grid <u>Speakers :</u> ISA, OMC Power, Gov. of Uttar Pradesh etc.

(8) 24th of March 2022 (Hybrid of Physical & Online)

Theme : Hydrogen

<u>Speakers : NITI Aayog, MNRE, MoPNG(CHT), Kerala State,</u> TERI, Gateway House, Emb.of Japan in India, JBIC etc.

(9) 30th of March 2022

<u>Theme :</u> Drones <u>Speakers :Tech-Sci Research</u>

Conclusion

Hydrogen is key technology for carbon neutral - Japan has been strongly promoting hydrogen

Just started market penetration
- need to enhance application, improve technology

Our goal: Developing low-carbon energy system

- scaling-up / integration with other energy system

Thank you for your attention!

DO New Energy and Industrial Technology Development Organization NEW DELHI OFFICE

GLOBAL SYNERGY WITH TECHNOLOGICAL CO-OPERATION

We promote demonstration and R&D of advanced Japanese technologies overseas that contribute to the achievement of 3E+S (energy security, economic efficiency, environmental friendliness, plus safety) which then helps lead to the dissemination of the demonstrated technology.

VIEW MORE

WHAT'S NEW ->

ACCELERATING INNOVATION

NEDO India Website Twitter LinkedIn

10

4

in

bsite : <u>https://www.nedonewdelhi.in/</u>
itter : <u>https://twitter.com/NedoNewDelhi</u>

LinkedIn : https://in.linkedin.com/in/nedo-new-delhi-92134021b

